
HALTRON VT25 VACUUM TUBE ,POWER TUBE,FOR SALE,NOS
FOR PURCHASE ORDER CONTACT US
Whatsapp : +905012424245
Email : arashkeshmiri@outlook.com
100$
The BASICS
Back in 1904, British scientist John Ambrose Fleming first showed his device to convert an alternating current signal into direct current. The “Fleming diode” was based on an effect that Thomas Edison had first discovered in 1880, and had not put to useful work at the time. This diode essentially consisted of an incandescent light bulb with an extra electrode inside. When the bulb’s filament is heated white-hot, electrons are boiled off its surface and into the vacuum inside the bulb. If the extra electrode (also called an “plate” or “anode”) is made more positive than the hot filament, a direct current flows through the vacuum. And since the extra electrode is cold and the filament is hot, this current can only flow from the filament to the electrode, not the other way. So, AC signals can be converted into DC. Fleming’s diode was first used as a sensitive detector of the weak signals produced by the new wireless telegraph. Later (and to this day), the diode vacuum tube was used to convert AC into DC in power supplies for electronic equipment.
Many other inventors tried to improve the Fleming diode, most without success. The only one who succeeded was New York inventor Lee de Forest. In 1907 he patented a bulb with the same contents as the Fleming diode, except for an added electrode. This “grid” was a bent wire between the plate and filament. de Forest discovered that if he applied the signal from the wireless-telegraph antenna to the grid instead of the filament, he could obtain a much more sensitive detector of the signal. In fact, the grid was changing (“modulating”) the current flowing from the filament to the plate. This device, the Audion, was the first successful electronic amplifier. It was the genesis of today’s huge electronics industry.
Between 1907 and the 1960s, a staggering array of different tube families was developed, most derived from de Forest’s invention. With a very few exceptions, most of the tube types in use today were developed in the 1950s or 1960s. One obvious exception is the 300B triode, which was first introduced by Western Electric in 1935. Svetlana’s SV300B version, plus many other brands, continue to be very popular with audiophiles around the world. Various tubes were developed for radio, television, RF power, radar, computers, and specialized applications. The vast majority of these tubes have been replaced by semiconductors, leaving only a few types in regular manufacture and use.
INSIDE A TUBE
All modern vacuum tubes are based on the concept of the Audion–a heated “cathode” boils off electrons into a vacuum; they pass through a grid (or many grids), which control the electron current; the electrons then strike the anode (plate) and are absorbed. By designing the cathode, grid(s) and plate properly, the tube will make a small AC signal voltage into a larger AC voltage, thus amplifying it. (By comparison, today’s transistor makes use of electric fields in a crystal which has been specially processed–a much less obvious kind of amplifier, though much more important in today’s world.)
Figure 3 (Inside a miniature tube) shows a typical modern vacuum tube. It is a glass bulb with wires passing through its bottom, and connecting to the various electrodes inside. Before the bulb is sealed, a powerful vacuum pump sucks all the air and gases out. This requires special pumps which can make very “hard” vacuums. To make a good tube, the pump must make a vacuum with no more than a millionth of the air pressure at sea level (one microTorr, in official technical jargon). The “harder” the vacuum, the better the tube will work and the longer it will last. Making an extremely hard vacuum in a tube is a lengthy process, so most modern tubes compromise at a level of vacuum that is adequate for the tube’s application.